CALCULATION OF SUPERCAVITATIONAL FLOW
PAST SLENDER PROFILES IN PROXIMITY
TO THE SEPARATION BOUNDARY

I. I. Efremov and V. M. Roman

Numerical data on pressure distribution, cavity thickness, and the overall characteristics of
fully cavitated slender profiles moving near the free surface of a weightless liquid or close

to a solid wall are obtained on the basis of the potential of accelerations and of approximate

solution of singular integral equations by the method of discrete perturbations.

The problem of steady motion of a fully cavitating profile near a free surface was considered in linear
formulation by Johnson [1}, Auslaender [2], and Yim [3]. The method of conformal mapping was used in their
papers for deriving the expansion of the complex potential in the neighborhood of an infinitely distant point.
Analytical expressions for the over-all characteristics were also obtained for the case of an unbounded
cavity {1, 2].

The mathematics of this problem reduce to the determination of the velocity potential with discontin~
uities of tangent and normal derivatives, or of that of accelerations with discontinuities of the function itself
and of normal derivatives. The analysis of both problems leads to the same conclusions.

1. Let us consider the following pattern of cavitational flow past a slim profile.

Let the cavity begin over the leading edge, run off from below the trailing edge, and be closed in an
elliptical contour at a certain distance [ > 1 from the leading edge.

We introduce an orthogonal system of coordinates rigidly attached to the body with its axis of abscissas
directed along the flow velocity v, of the unperturbed stream and the axis of ordinates vertically upward.

For the potential of accelerations or pressure the boundary value problem is formulated thus:

P_pP

outside the profile and the cavity

The kinematic condition along the wetted part of the profile and at the cavity boundary yields

22 [r@tyi@]=—1m {Fapa (1.2)

Y=

Here fo{x) is the mean line of the profile and of the cavern, and t(x) is the thickness of the cavern,

At the upper and lower boundaries of the cavern the dynamic condition of pressure constancy
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where % is the cavitation number, and P, and P are pressures at infinity and in the cavity respectively,
must also be satisfied.

These boundary conditions must be supplemented by the condition of absence of perturbations at
infinity and the condition at the free surface (y = h) or at the solid wall (y = ~h).

These are, respectively,

apP
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(1.4)

Using the Green's formulas and the method of conformal mapping with respect to either a free sur-
face or a solid wall, we represent the solution of the stated boundary value problem (1.1) -(1.4) for the
potential of accelerations or pressure in the form
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Here v = —1 in the case of free surface and v = +1 for a solid wall; y(x) is the jump of pressure P,
and IdP/dnf is the jump of the normal derivative of the pressure.

The kernels of integrals in formula (1.5) have been constructed with the boundary conditions at the
free surface and at the wall taken into account.

With boundary conditions (1.2) and (1.4) fulfilled we obtain the system of integral equations
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Subtracting the second equation from the first, we obtain

2 (z) = S[%} (&) dE = 2q (2) (1.8)

0

Stipulating the condition g(0) = g(I) = 0 and taking (1.8) into consideration, we integrate the second and
third equation of system (1.7):
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The last relationship is the condition for point closing of the cavity, which at that point has a vertical
tangent,

The equations of system (1.9) are particular integral equations with Cauchy kernels of the general
kind. The unknown densities of integrals v(x) and q(x} of system (1.9) may be considered to be intensities
of the double and single layers distributed along segments {0, 1 and |0, |, respectively. It follows from
physical considerations that the solution of system (1.9) is to be sought in the class of functions such that:
function vy has an integrable singularity at x = 0 and is bounded for x = 1 (Zhukovskii-Chaplygin condition);
function q is bounded for x = 0 and has an integrable singularity for x = L.

An analytical solution of system (1.9) has been found only for the case of transition to Limit (h— «
and [ — «) [4]. One of the numerical solutions of system (1.9) and the derivation of its basis of hydro-
dynamic characteristics are considered below.

For solving system (1.9) we use the method of discrete perturbations, which is a generalization of the
3/4 method first used by Pistolezzi, Weissinger, and Folkner and fully developed by Belotserkovskii and his
students [5] under the name of discrete vortices, The method consists of the substitution of a discrete dis-
tribution of perturbations in layers for the continuous one and the derivation on this basis of a system of
linear algebraic equations by using mechanical squaring formulas. The distribution order of perturbations

and point s at which boundary conditions are satisfied is determined by the class of functions in which the
solution is being sought.

2. As shown in [4, 6, 7] the pressure drop near the leading edge of a cavitating profile has for § —0
a singularity of order 6~ 1/%, The method of discrete vortices provides a good approximate solution of the
problem of a noncavitating profile, if for 6 — 0 the solution singularity at the leading edge is of the order
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- r of 671/2, Therefore to improve the convergence of the 3/4 method we firstpass
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If N is the number of segments into which the chord length of profile
[0,1] is subdivided and M is the number of segments of line |1, V7 |, the
selection of the singularity and calculation points is made as follows:

for v (¢)

/ . ' (2.2)
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Convergence of the described method is investigated by comparing the exact and the approximate
solutions obtained for various N and M in the case of an unbounded liquid.

In the hydrodynamics of cavitational flows the following two problems are of practical interest: 1)
determination of the shape of the cavity and of hydrodynamic characteristics for a given body shape; 2)

determination of the shape of the body and of the cavity, and of the hydrodynamic characteristics for a given
pressure (load) distribution on the body.

Let us consider two examples,

Example 1. A plate at an angle of attack o, In this case
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We substitute the system of linear algebraic equations
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for the system of integral equations (2.1).
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Having solved system (2.3), we determine the hydrodynamic characteristics and the cavity thickness
by the formulas
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The mean line fo(x) is determined from the first of Egs. (2.1).

The calculations for N = 8 and M = 16, and various lengths of cavern and various h were carried out
on a BESM-2M computer. The results of calculations of %, vy, and Cy are shown in Figs, 1-3. In Fig. 4 is
shown a comparison of the results obtained by the described linearized theory (solid lines) and those of the
exact solution (dashed lines) derived by the nonlinear theory [8]. This shows that for a plate fully cavitating
under a free surface the linear theory yields higher values of lift,

For h — o the correlation between the calculated results and those of the exact solution presented by
Guerst [7] (dashed lines in Figs. 1 and 3) is good. The error of determination of the over-all character-
istics does not exceed 4%, and decreases with increased cavity length.

Example 2. Pressure distribution is specified by a rectangular law, i.e., y(x) = A = const,

The unknown q(x) and % are determined from the last two equations of system (1.9), while its first
equation is used for determining the mean line f,(x).

Using the method of discrete perturbations, we obtain for 9y and % the system of linear algebraic
equations
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The results of calculations are presented in Fig, 5.

The described numerical method can also be used for calculating flows past cavitating grids and for
determining the wall effect in hydrodynamic tubes. It can also be extended to the calculation of slender

supercavitating load-carrying surfaces.
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